Abstract

Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P < 0.0001) and high quantity of conidia (eave baffles plus two cotton panels; HR = 2.32, P < 0.0001). We conclude that high infection rates of entomopathogenic fungi on wild malaria vectors and possibly significant disruption of malaria transmission can be achieved if the fungus is delivered using optimally located outdoor odor-baited stations.

Highlights

  • Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission

  • Despite the widely documented potential of entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana to infect and kill adult disease-transmitting mosquitoes [1,2,3], it remains questionable how feasible and effective this technology would be in real life situations

  • Specific concerns include: 1) lack of knowledge regarding the efficacy of different fungal strains under field conditions and 2) how to best deliver the fungi so as to achieve maximum infection rates while minimizing public health concerns associated with introducing fungal conidia inside houses [2]

Read more

Summary

Introduction

Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. For each OBS, two opposite eave openings were designated for mosquito entry and, to reduce egress, these points were fitted with black cotton cloth baffles [11].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.