Abstract
PurposeIn this study, we propose an artificial intelligence (AI) framework based on three-dimensional convolutional neural networks to classify computed tomography (CT) scans of patients with coronavirus disease 2019 (COVID-19), influenza/community-acquired pneumonia (CAP), and no infection, after automatic segmentation of the lungs and lung abnormalities.MethodsThe AI classification model is based on inflated three-dimensional Inception architecture and was trained and validated on retrospective data of CT images of 667 adult patients (no infection n=188, COVID-19 n=230, influenza/CAP n=249) and 210 adult patients (no infection n=70, COVID-19 n=70, influenza/CAP n=70), respectively. The model's performance was independently evaluated on an internal test set of 273 adult patients (no infection n=55, COVID-19 n= 94, influenza/CAP n=124) and an external validation set from a different centre (305 adult patients: COVID-19 n=169, no infection n=76, influenza/CAP n=60).ResultsThe model showed excellent performance in the external validation set with area under the curve of 0.90, 0.92 and 0.92 for COVID-19, influenza/CAP and no infection, respectively. The selection of the input slices based on automatic segmentation of the abnormalities in the lung reduces analysis time (56 s per scan) and computational burden of the model. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) score of the proposed model is 47% (15 out of 32 TRIPOD items).ConclusionThis AI solution provides rapid and accurate diagnosis in patients suspected of COVID-19 infection and influenza.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.