Abstract

Major efforts are currently being made in the research community to address the challenges of greenhouse gas emissions from fossil fuel combustion by using lignocellulosic biomass, agricultural waste, and forest residues as cleaner energy sources. However, its poor qualities, such as low energy density, high moisture content, irregular shape and size, and heterogeneity, make it impossible to utilize in its natural state. Torrefaction, a simple heat treatment method, is used frequently with natural bioresources to improve their thermal characteristics so that they may be used as energy sources in domestic power plants. The quality of the resulting torrefied solids (biochar) is determined by the heat condition settings in the absence of oxygen, and it may be enhanced by carefully selecting and altering the processing parameters. The comprehensive overview presented here should serve as a useful toolkit for farmers, combined heat and power plants, pulp and paper installations, and other industrial plants that use biomass as a substrate for biofuel production. This research focuses on torrefaction product properties, reaction mechanisms, a variety of technologies, and torrefaction reactors. It is impossible to determine which torrefaction technology is superior as each reactor has unique properties. However, some suggestions and recommendations regarding the use of torrefaction reactors are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call