Abstract
The influence of mechanical stress on the magnetic hysteretic behavior is modeled through the association of a reversible simplified multiscale approach, and a macroscopic energy-based magnetic hysteresis model in a vector-play form. A phenomenological description of the dissipation parameters under mechanical stress is proposed. The non-monotonic effect of tensile stress on the magnetic permeability is modeled using a second-order development in the magneto-elastic energy. Material parameters for both reversible and irreversible behavior are identified from experimental characterization under mechanical stress performed on a DC04 electrical steel. The experimental tests include anhysteretic and hysteretic measurements. Modeling results of the anhysteretic magnetic permeability, the coercive field, and the remanent induction under several levels of peak magnetic field and uniaxial mechanical stress are satisfactorily compared with those obtained experimentally. The model is shown to reasonably predict the hysteresis losses under tensile and compressive stress, as well as the response of the material under a complex magnetic field waveform with harmonic content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.