Abstract

Social media significantly influences business, politics, and society. Easy access and interaction among users allow information to spread rapidly across social networks. Understanding how information is disseminated through these new publishing methods is crucial for political and marketing purposes. However, modeling and predicting information diffusion is challenging due to the complex interactions between network users. This study proposes an analytical approach based on diffusion models to predict the number of social media users engaging in discussions on a topic. We develop a modified version of the susceptible–infected (SI) model that considers the heterogeneity of interactions between users in complex networks. Our model considers the network structure, abandons the assumption of homogeneous mixing, and focuses on information diffusion in scale-free networks. We provide explicit algorithms for modeling information propagation on different types of random graphs and real network structures. We compare our model with alternative approaches, both those considering network structure and those that do not. The accuracy of our model in predicting the number of informed nodes in simulated information diffusion networks demonstrates its effectiveness in describing and predicting information dissemination in social networks. This study highlights the potential of graph-based epidemic models in analyzing online discussion topics and understanding other phenomena spreading on social networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.