Abstract

In this paper we present an extension of the proximal point algorithm with Bregman distances to solve constrained minimization problems with quasiconvex and convex objective function on Hadamard manifolds. The proposed algorithm is a modified and extended version of the one presented in Papa Quiroz and Oliveira (J Convex Anal 16(1): 49---69, 2009). An advantage of the proposed algorithm, for the nonconvex case, is that in each iteration the algorithm only needs to find a stationary point of the proximal function and not a global minimum. For that reason, from the computational point of view, the proposed algorithm is more practical than the earlier proximal method. Another advantage, for the convex case, is that using minimal condition on the problem data as well as on the proximal parameters we get the same convergence results of the Euclidean proximal algorithm using Bregman distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.