Abstract

The Kolmogorov–Feller weak law of large numbers for i.i.d. random variables without finite mean is extended to a larger class of distributions, requiring regularly varying normalizing sequences. As an application we show that the weak law of large numbers for the St. Petersburg game is an immediate consequence of our result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.