Abstract

An extended formulation of the immersed boundary method, which facilitates simulation of incompressible isothermal and natural convection flows around immersed bodies and which may be applied for linear stability analysis of the flows, is presented. The Lagrangian forces and heat sources are distributed on the fluid–structure interface. The method treats pressure, the Lagrangian forces, and heat sources as distributed Lagrange multipliers, thereby implicitly providing the kinematic constraints of no-slip and the corresponding thermal boundary conditions for immersed surfaces. Extensive verification of the developed method for both isothermal and natural convection 2D flows is provided. Strategies for adapting the developed approach to realistic 3D configurations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.