Abstract

We present an extension of the generalized nonlocal (GNL) optical response theory for the mode analysis of several plasmonic waveguides. We show that, compared with the local description, the imaginary part of the effective mode index is enlarged using the GNL response model. We ascribe this enlargement to the ‘effective’ surface modification and the induced charge diffusion. This result is quite different from that of the hydrodynamic model, where the imaginary part becomes smaller compared with that of the local model. Further, we investigate the influence of geometry parameters on propagation properties and find that the nonlocal effects are much more remarkable for smaller gap and sharper tip. Although the introduction of diffusion has a negative impact on the propagation length, it reveals the true physical insight and should be taken care when dealing with nanoplasmonic waveguide for photonic integration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.