Abstract

Let L be a σ-Dedekind complete Riesz space. In (8), H. Nakano uses an extension of the multiplication operator on a Riesz space into itself (analagous to the closed operator on a Hilbert space) to obtain a representation space for the Riesz space L. He calls such an operator a “dilatator operator on L.” More specifically, he shows that the set of all dilatator operators , when suitable operations are defined, is a Dedekind complete Riesz space which is isomorphic to the space of all functions defined and continuous on an open dense subset of some fixed totally disconnected Hausdorff space. The embedding of L in the function space is then obtained by showing that L is isomorphic to a Riesz subspace of . Moreover, when L is Dedekind complete, it is an ideal in , and the topological space is extremally disconnected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.