Abstract
We suggest an extension of the neural gas vector quantization method to local principal component analysis. The distance measure for the competition between local units combines a normalized Mahalanobis distance in the principal subspace and the squared reconstruction error, with the weighting of both measures depending on the residual variance in the minor subspace. A recursive least-squares method performs the local principal component analysis. The method is tested on synthetic two- and three-dimensional data and on the recognition of handwritten digits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.