Abstract

We extend the classical Mercer theorem to reproducing kernel Hilbert spaces whose elements are functions from a measurable space X into Cn. Given a finite measure μ on X, we represent the reproducing kernel K as a convergent series in terms of the eigenfunctions of a suitable compact operator depending on K and μ. Our result holds under the mild assumption that K is measurable and the associated Hilbert space is separable. Furthermore, we show that X has a natural second countable topology with respect to which the eigenfunctions are continuous and such that the series representing K uniformly converges to K on compact subsets of X×X, provided that the support of μ is X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.