Abstract

We prove a conjecture of Haglund which can be seen as an extension of the equidistribution of the inversion number and the major index over permutations to ordered set partitions. Haglund's conjecture implicitly defines two statistics on ordered set partitions and states that they are equidistributed. The implied inversion statistic is equivalent to a statistic on ordered set partitions studied by Steingrímsson, Ishikawa, Kasraoui, and Zeng and is known to have a nice distribution in terms of q-Stirling numbers. The resulting major index exhibits a combinatorial relationship between q-Stirling numbers and the Euler–Mahonian distribution on the symmetric group, solving a problem posed by Steingrímsson.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.