Abstract

ABSTRACTA theorem of Kaplansky asserts that a semigroup of matrices with entries from a field whose members all have singleton spectra is triangularizable. Indeed, Kaplansky’s Theorem unifies well-known theorems of Kolchin and Levitzki on simultaneous triangularizability of semigroups of unipotent and nilpotent matrices, respectively. First, for a division ring D of characteristic zero whose center intersects its multiplicative commutator group in a finite group, we prove that the counterpart of Kolchin’s Theorem over D implies that of Kaplansky’s Theorem over D. Next, we note that this proof, when adjusted in the setting of fields, provides a new and simple proof of Kaplansky’s Theorem over fields of characteristic zero. We show that if Kaplansky’s Theorem holds over a division ring D, which is for instance the case over general fields, then a generalization of Kaplansky’s Theorem holds over D, and in particular over general fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.