Abstract
Constructing code analyzers may be costly and error prone if inadequate technologies and tools are used. If they are written in a conventional programming language, for instance, several thousand lines of code may be required even for relatively simple analyses. One way of facilitating the development of code analyzers is to define a very high-level domain-oriented language and implement an application generator that creates the analyzers from the specification of the analyses they are intended to perform. This paper presents a system for developing code analyzers that uses a database to store both a no-loss fine-grained intermediate representation and the results of the analyses. The system uses an algebraic representation, called F(p), as the user-visible intermediate representation. Analyzers are specified in a declarative language, called F(p)-l, which enables an analysis to be specified in the form of a traversal of an algebraic expression, with access to, and storage of, the database information the algebraic expression indices. A foreign language interface allows the analyzers to be embedded in C programs. This is useful for implementing the user interface of an analyzer, for example, or to facilitate interoperation of the generated analyzers with pre-existing tools. The paper evaluates the strengths and limitations of the proposed system, and compares it to other related approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.