Abstract

It is proposed that the electron should be considered classically as a charged conducting surface, with a surface tension to prevent it from flying apart under the repulsive forces of the charge. Such an electron has a state of stable equilibrium with spherical symmetry, and if disturbed its shape and size oscillate. The equations of motion are deduced from an action principle and a Hamiltonian form alism is obtained. The energy of the first excited state with spherical symmetry is worked out according to the Bohr-Sommerfeld method of quantization, and is found to be about 53 times the rest-energy of the electron. It is suggested that this first excited state may be considered as a muon. The present theory has no electron spin, so it cannot agree accurately with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.