Abstract

This study develops an extended unresolved CFD-DEM coupling method for simulation of the fluid–solid flow with non-spherical particles. The limitation of fluid grid size is discussed, by simulating the settling of a cylinder in a Newtonian fluid based on the resolved and unresolved CFD-DEM coupling method. Then, the calculation of porosity and the fluid–particle relative velocity based on the particle shape enlargement method for simulation of non-spherical particles is proposed. The availability of the particle shape enlargement method for the simulation of non-spherical particles with different sphericity is discussed in this work, by comparing it with the results from the equivalent diameter enlargement method. The limitation of the equivalent diameter enlargement method for non-spherical particles is revealed from the simulation results. Several typical cases are employed to elaborate and verify the extended unresolved CFD-DEM method based on particle shape enlargement method, by presenting a good consistency with the experimental results. It proves that the extended unresolved CFD-DEM method is suitable for different CFD grid size ratios, and consolidates that it is a universal calculation method for CFD-DEM coupling simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call