Abstract
Inductive logic programming (ILP) is concerned with learning relational descriptions that typically have the form of logic programs. In a transformation approach, an ILP task is transformed into an equivalent learning task in a different representation formalism. Propositionalization is a particular transformation method, in which the ILP task is compiled to an attribute-value learning task. The main restriction of propositionalization methods such as LINUS is that they are unable to deal with nondeterminate local variables in the body of hypothesis clauses. In this paper we show how this limitation can be overcome., by systematic first-order feature construction using a particular individual-centered feature bias. The approach can be applied in any domain where there is a clear notion of individual. We also show how to improve upon exhaustive first-order feature construction by using a relevancy filter. The proposed approach is illustrated on the “trains” and “mutagenesis” ILP domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.