Abstract
A rule base covering the entire input domain is required for the conventional Mamdani inference and Takagi–Sugeno–Kang (TSK) inference. Fuzzy interpolation enhances conventional fuzzy rule inference systems by allowing the use of sparse rule bases by which certain inputs are not covered. Given that almost all of the existing fuzzy interpolation approaches were developed to support the Mamdani inference, this paper presents a novel fuzzy interpolation approach that extends the TSK inference. This paper also proposes a data-driven rule base generation method to support the extended TSK inference system. The proposed system enhances the conventional TSK inference in two ways: (1) workable with incomplete or unevenly distributed data sets or incomplete expert knowledge that entails only a sparse rule base and (2) simplifying complex fuzzy inference systems by using more compact rule bases for complex systems without the sacrificing of system performance. The experimentation shows that the proposed system overall outperforms the existing approaches with the utilisation of smaller rule bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.