Abstract

A new similarity transformation has been devised for extensive studies of accelerating non-Newtonian film flow. The partial differential equations governing the hydrodynamics of the flow of a power-law fluid down along an inclined plane surface are transformed into a set of two ordinary differential equations by means of the dimensionless velocity component approach. Although the analysis is applicable for any angle of inclination α (0⩽α< π/2) , the resulting one-parameter problem involves only the power-law index n. Nevertheless, physically essential quantities, like the velocity components and the skin-friction coefficient, do depend on α and relevant relationships are deduced between the vertical and inclined cases. Accurate numerical similarity solutions are provided for n in the range from 0.1 to 2.0. The present method enables solutions to be obtained also for highly pseudo-plastic films, i.e. for n below 0.5. The mass flow rate entrained into the momentum boundary layer from the inviscid freestream is expressed in terms of a dimensionless mass flux parameter Φ, which depends on the dimensionless boundary layer thickness and the velocity components at the edge of the viscous boundary layer. Φ, which is thus an integral part of the similarity solution, turns out to decrease monotonically with n. This parameter is of particular relevance in the determination of the streamwise position at which the entire freestream has been entrained and viscous stresses prevail all the way to the free surface of the film. A short-cut method to facilitate rapid and yet accurate estimates of the mass flux parameter is developed to this end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.