Abstract
An extended single-index model is considered when responses are missing at random. A three-step estimation procedure is developed to define an estimator for the single index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Some simulation study is conducted to investigate the finite sample performances of the pro- posed estimators.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.