Abstract

This paper is concerned with nonlinear, semidefinite, and second-order cone programs. A general algorithm, which includes sequential quadratic programming and sequential quadratically constrained quadratic programming methods, is presented for solving these problems. In the particular case of standard nonlinear programs, the algorithm can be interpreted as a prox-regularization of the Solodov sequential quadratically constrained quadratic programming method presented in Mathematics of Operations Research (2004). For such type of methods, the main cost of computation amounts to solve a linear cone program for which efficient solvers are available. Usually, “global convergence results” for these methods require, as for the Solodov method, the boundedness of the primal sequence generated by the algorithm. The other purpose of this paper is to establish global convergence results without boundedness assumptions on any of the iterative sequences built by the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.