Abstract

In this paper, a fast identification algorithm for non-linear dynamic stochastic system identification is presented. The algorithm extends the classical orthogonal forward regression (OFR) algorithm so that instead of using the error reduction ratio (ERR) for term selection, a new optimality criterion, Shannon's entropy power reduction ratio (EPRR), is introduced to deal with both Gaussian and non-Gaussian signals. It is shown that the new algorithm is both fast and reliable and examples are provided to illustrate the effectiveness of the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.