Abstract
In this paper, we propose an extended mixed finite element method for elliptic interface problems. By adding some stabilization terms, we present a mixed approximation form based on Brezzi-Douglas-Marini element space and the piecewise constant function space, and show that the discrete inf-sup constant is independent of how the interface intersects the triangulation. Furthermore, we derive that the optimal convergence holds independent of the location of the interface relative to the mesh. Finally, some numerical examples are presented to verify our theoretical results.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.