Abstract

ABSTRACT This paper presents a novel tyre model which combines the LuGre formulation with the exact brush theory recently developed by the authors, and which accounts for large camber angles and turning speeds. Closed-form solutions for the frictional state at the tyre-road interface are provided for the case of constant slip inputs, considering rectangular and elliptical contact patches. The steady-state tyre characteristics resulting from the proposed approach are compared to those obtained by employing the standard formulation of the LuGre-brush tyre models and the exact brush theory for large camber angles. Then, to cope with the general situation of time-varying slips and spins, two approximated lumped models are developed that describe the aggregate dynamics of the tyre forces and moment. In particular, it is found that the transient evolution of the tangential forces may be approximated by a system of two coupled ordinary differential equations (ODEs), whilst the dynamics of the self-aligning moment may be described by combining two systems of two coupled ODEs. Given its stability properties and ease of implementation, the lumped one may be effectively employed for vehicle state estimation and control purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.