Abstract

A physics-based model on polarization switching in ferroelectric polycrystalline films is proposed. The calculation results by the model agree well with experimental results regarding dynamic operations of ferroelectric-gate field-effect transistors (FeFETs). In the model, an angle θ for each grain in the ferroelectric polycrystal is defined, where θ is the angle between the spontaneous polarization and the film normal direction. Under a constant electric field for a single-crystal film with θ = 0, phenomena regarding polarization domain nucleation and wall propagation are well described by the Kolmogorov-Avrami-Ishibashi theory. Since the electric fields are time-dependent in FeFET operations and the θ values are distributed in the polycrystalline film, the model in this paper forms an extended Kolmogorov-Avrami-Ishibashi (EKAI) model. Under a low electric field, the nucleation and domain propagation proceed according to thermally activated processes, meaning that switching the time scale of a grain with the angle θ is proportional to an exponential form as exp(const./Ezcosθ) [Ez: the film-normal electric field]. Wide θ distribution makes the time response quite broad even on the logarithmic scale, which relates well with the broad switching time experimentally shown by FeFETs. The EKAI model is physics based and need not assume non-physical distribution functions in it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.