Abstract
State of charge (SOC) is a very important variable for using batteries safely and reliably. To improve the accuracy of SOC estimation, a novel variational extended Kalman filter (EKF) technique based on least square error method is herein provided by establishing a second-order equivalent circuit model for the battery. It was found that when SOC decreased, resistance polarization occurred in the electrochemical model, and the parameters in the equivalent RC model varied. To decrease the modeling error in the equivalent circuit model, the system parameters were identified online depending on the SOC’s estimated result. Through the SOC-estimation process, the variation theorem was introduced, which enabled the system parameters to track the real situations based on the output measured. The experiment results reveal the comparison of the SOC-estimation results of the variational EKF algorithm, the traditional EKF algorithm, the recursive least square (RLS) EKF algorithm, and the forgotten factor recursive least square (FFRLS) EKF algorithm based on different indices, including the mean square error (MSE) and the mean absolute error (MAE). The variational EKF algorithm provided in this paper has higher estimation accuracy and robustness than the traditional EKF, which verifies the superiority and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.