Abstract
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.