Abstract
An extended hazard and operability (HAZOP) analysis approach with dynamic fault tree is proposed to identify potential hazards in chemical plants. First, the conventional HAZOP analysis is used to identify the possible fault causes and consequences of abnormal conditions, which are called deviations. Based on HAZOP analysis results, hazard scenario models are built to explicitly represent the propagation pathway of faults. With the quantitative analysis requirements of HAZOP analysis and the time-dependent behavior of real failure events considered, the dynamic fault tree (DFT) analysis approach is then introduced to extend HAZOP analysis. To simplify the quantitative calculation, the DFT model is solved with modularization approach in which a binary decision diagram (BDD) and Markov chain approach are applied to solve static and dynamic subtrees, respectively. Subsequently, the occurrence probability of the top event and the probability importance of each basic event with respect to the top event are determined. Finally, a case study is performed to verify the effectiveness of the approach. Results indicate that compared with the conventional HAZOP approach, the proposed approach does not only identify effectively possible fault root causes but also quantitatively determines occurrence probability of the top event and the most likely fault causes. The approach can provide a reliable basis to improve process safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.