Abstract

The main problems faced by a dynamic model within a Kalman filter occur when the system experiences unexpected dynamic conditions, a change in data acquisition rate, or when the dynamics of the system are non-linear. To minimize the errors produced from dynamic modelling in unusual conditions, an extended dynamic model is developed in this paper, and its usefulness demonstrated through comparison of the performance of a Kalman filter's response to simulated data with a standard dynamic model and the extended dynamic model. The results show that, in use, the proposed extended dynamic model is superior to a standard dynamic model, due mainly to its ability to adapt to a wider range of dynamic conditions, which in turn ensures the optimization of the Kalman filter and the consequent generation of reliable positioning results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call