Abstract

Poor aqueous solubility of numerous active pharmaceutical ingredients has raised considerable concern about the bioavailability of drugs. A porous hollow fiber antisolvent crystallization (PHFAC) device was designed to continuously produce drug nanocrystals under ambient conditions. The drug solution pumped into the shell side of the module encountered jets of antisolvent deionized water from tiny pores on the hollow fiber walls inducing a high degree of supersaturation as well as crystallization of the obtained nanoparticles. To study the effect of duration of operation for the PHFAC module and the stability of the nanocrystal production, a larger-scale and a smaller-scale module were designed to compare the nanocrystals in a 60 min long experiment. The characterized results showed that the nanocrystals were stable in size and morphology, and the nanocrystals produced by the larger-scale module presented no difference from those of the small-scale module. Meanwhile, the drug nanoparticles remained unchan...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.