Abstract

For linear bilevel programming, the branch and bound algorithm is the most successful algorithm to deal with the complementary constraints arising from Kuhn–Tucker conditions. However, one principle challenge is that it could not well handle a linear bilevel programming problem when the constraint functions at the upper-level are of arbitrary linear form. This paper proposes an extended branch and bound algorithm to solve this problem. The results have demonstrated that the extended branch and bound algorithm can solve a wider class of linear bilevel problems can than current capabilities permit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.