Abstract
Numerical techniques for the analysis of wave–body interactions are developed by the combined use of two boundary integral equation formulations. The velocity potential, which is expressed in a perturbation expansion, is obtained directly from the application of Green's theorem (the ‘potential formulation’), while the fluid velocity is obtained from the gradient of the alternative form where the potential is represented by a source distribution (the ‘source formulation’). In both formulations, the integral equations are modified to remove the effect of the irregular frequencies. It is well known from earlier works that if the normal velocity is prescribed on the interior free surface, inside the body, an extended boundary integral equation can be derived which is free of the irregular frequency effects. It is shown here that the value of the normal velocity on the interior free surface must be continuous with that outside the body, to avoid a logarithmic singularity in the source strength at the waterline. Thus the analysis must be carried out sequentially in order to evaluate the fluid velocity correctly: first for the velocity potential and then for the source strength. Computations are made to demonstrate the effectiveness of the extended boundary integral euations in the potential and source formulations. Results are shown which include the added-mass and damping coefficients and the first-order wave-exciting forces for simple three-dimensional bodies and the second-order forces on a tension-leg-platform. The latter example illustrates the importance of removing irregular frequency effects in the context of second-order wave loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.