Abstract

We describe a natural extension of the banker's algorithm (D.W. Dijkstra, 1968) for deadlock avoidance in operating systems. Representing the control flow of each process as a rooted tree of nodes corresponding to resource requests and releases, we propose a quadratic-time algorithm which decomposes each flow graph into a nested family of regions, such that all allocated resources are released before the control leaves a region. Also, information on the maximum resource for each of the regions can be extracted prior to process execution. By inserting operating system calls when entering a new region for each process at runtime, and applying the original banker's algorithm for deadlock avoidance, this method has the potential to achieve better resource utilization because information on the localized approximate maximum claims is used for testing system safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.