Abstract

Abstract In this paper, a new computational technique is presented based on the extended arbitrary Lagrangian–Eulerian finite element model (X-ALE–FEM) in plasticity forming of powder compaction. An arbitrary Lagrangian–Eulerian (ALE) technique is employed to capture the advantages of both Lagrangian and Eulerian methods and alleviate the drawbacks of the mesh distortion in Lagrangian formulation. In order to remove the limitation of the mesh conforming to the boundary conditions in this process, the extended finite element method (X-FEM) is implemented by incorporating discontinuous fields through a partition of unity method. The implementation of X-FEM technique in the framework of ALE model is finally presented in modeling of a shaped tablet component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.