Abstract
This work derives and simulates a two-dimensional extension of the nonlinear Gao beam, by adding the cross-sectional shear variable, similarly to the extension of the usual Bernoulli–Euler beam into the Timoshenko beam. The model allows for oscillatory motion about a buckled state, as well as adds vertical shear of the cross sections, thus reflecting better nonlinear thick beams. The static model is derived from the principle of virtual elastic energy, and is in the form of a highly nonlinear coupled system for the beams transverse vibrations and the motion of the cross sections. The model allows for general distributive transversal and longitudinal loads and a compressive horizontal load acting on its edges. The model is simulated numerically, using the dynamic version for better insight into the steady solutions. The terms that distinguish our numerical solutions from the solutions of the Gao beam, described in the literature, are highlighted. The numerical scheme and its characteristic finite element matrices allow us to obtain simulation results that demonstrate the type of vibrations of our extended and modified beam, and also the differences between these solutions and those of the Gao beam model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.