Abstract

The Arabidopsis (Arabidopsis thaliana) genome encodes a family of 51 proteins that are homologous to known serine carboxypeptidases. Based on their sequences, these serine carboxypeptidase-like (SCPL) proteins can be divided into several major clades. The first group consists of 21 proteins which, despite the function implied by their annotation, includes two that have been shown to function as acyltransferases in plant secondary metabolism: sinapoylglucose:malate sinapoyltransferase and sinapoylglucose:choline sinapoyltransferase. A second group comprises 25 SCPL proteins whose biochemical functions have not been clearly defined. Genes encoding representatives from both of these clades can be found in many plants, but have not yet been identified in other phyla. In contrast, the remaining SCPL proteins include five members that are similar to serine carboxypeptidases from a variety of organisms, including fungi and animals. Reverse transcription PCR results suggest that some SCPL genes are expressed in a highly tissue-specific fashion, whereas others are transcribed in a wide range of tissue types. Taken together, these data suggest that the Arabidopsis SCPL gene family encodes a diverse group of enzymes whose functions are likely to extend beyond protein degradation and processing to include activities such as the production of secondary metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.