Abstract
Abstract We consider a space–time fractional parabolic problem. Combining a sinc quadrature-based method for discretizing the Riesz–Dunford integral with $hp$-FEM in space yields an exponentially convergent scheme for the initial boundary value problem with homogeneous right-hand side. For the inhomogeneous problem, an $hp$-quadrature scheme is implemented. We rigorously prove exponential convergence with focus on small times $t$, proving robustness with respect to startup singularities due to data incompatibilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.