Abstract
Abstract For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.