Abstract

A common technical difficulty in device-free localization and tracking (DFLT) with a wireless sensor network is that the change of the received signal strength (RSS) of the link often becomes more unpredictable due to the multipath interferences. This challenge can lead to unsatisfactory or even unstable DFLT performance. This work focuses on developing a new RSS model, called Exponential-Rayleigh (ER) model, for addressing this challenge. Based on data from our extensive experiments, we first develop the ER model of the received signal strength. This model consists of two parts: the large-scale exponential attenuation part and the small-scale Rayleigh enhancement part. The new consideration on using the Rayleigh model is to depict the target-induced multipath components. We then explore the use of the ER model with a particle filter in the context of multi-target localization and tracking. Finally, we experimentally demonstrate that our ER model outperforms the existing models. The experimental results highlight the advantages of using the Rayleigh model in mitigating the multipath interferences thus improving the DFLT performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.