Abstract

We prove an exponential lower bound on the size of any fixed degree algebraic decision tree for solving MAX, the problem of finding the maximum of n real numbers. This complements the n— 1 lower bound of [Rabin (1972)] on the depth of algebraic decision trees for this problem. The proof in fact gives an exponential lower bound on the size of the polyhedral decision problem MAX= for testing whether the j-th number is the maximum among a list of n real numbers. Previously, except for linear decision trees, no nontrivial lower bounds on the size of algebraic decision trees for any familiar problems are known. We also establish an interesting connection between our lower bound and the maximum number of minimal cutsets for any rank-d hypergraph on n vertices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.