Abstract

Detailed information on the three-dimensional dispersion of collagen fibres within layers of healthy and diseased soft biological tissues has been reported recently. Previously we have proposed a constitutive model for soft fibrous solids based on the angular integration approach which allows the exclusion of any compressed collagen fibre within the dispersion. In addition, a computational implementation of that model in a general purpose finite element program has been investigated and verified with the standard fibre-reinforcing model for fibre contributions. In this study, we develop the proposed fibre dispersion model further using an exponential form of the strain-energy function for the fibre contributions. The finite element implementation of this model with a rotationally symmetrical dispersion of fibres is also presented. This includes explicit expressions for the stress and elasticity tensors. The performance and implementation of the new model are demonstrated by means of a uniaxial extension test, a simple shear test, and an extension–inflation simulation of a residually stressed carotid artery segment. In each example we have obtained good agreement between the finite element solution and the analytical or experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.