Abstract

Allelic diversity for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) associated with floral organ development were investigated among a small heterogeneous rice population which included one wild species (O. rufipogon Griffiths), one indigenous less popular natural floral organ mutant (O. sativa var. indica cv. Jugal), one indigenous normal line (O. sativa var. indica cv. Bhutmoori) and one improved high yielding line (O. sativa var. indica cv. IR 36). Detailed spikelet morphology showed that var. Jugal had variable number (1 - 3) of carpels within a single spikelet which was unique and resulted in variable (1 - 3) number of kernels within a single matured spikelet (grain). The genomic DNA of each investigated line was amplified with primer sequences designed from the selected genetic loci and the derived polymorphism profiles were used for study of allelic diversity for the studied loci. The derived genetic distances among the rice lines were used for dendrogram construction. In constructed dendrogram, the mutant genotype (Jugal) showed highest similarity with the wild rice (O. rufipogon) instead of the rice lines. To verify this finding, the genomic DNA of each studied line was also amplified with four SSR loci, tightly linked to saltol QTL, mapped to rice chromosome 1. The amplified products were screened for polymorphism and another dendrogram was constructed to reveal the genetic distance among the lines for selected salt tolerance linked SSR loci. In SSR derived dendrogram, the wild rice (O. rufipogon) got totally separated from the all three rice genotypes though all the studied four lines showed equal sensitivity for salt sensitivity in a physiological screening experiment. From the combined experiment, it can be concluded that genetic architecture of floral organ development loci in var. Jugal may have some uniqueness which is not present in normal rice but common to O. rufipogon, a species which is regarded as immediate progenitor of present day modern rice (O. sativa). Though this uniqueness was not confirmed by second set genetic loci associated with salt tolerance in rice, the information resulted from this experiment was preliminary and based only on allelic size (molecular weight of amplicon), which should be confirmed through sequence analysis for further analysis.

Highlights

  • The most important area in rice breeding is increase in quantity per unit area per unit time

  • The same rice line is available in Odisha, where it is called as Lavkush and maintained by Central Rice Research Institute, Cuttack under the accession name JMGR

  • OsMADS24 and OsMADS45 are orthologue of ArabidopsisAGL2 and AGL4 [26]. These two genes function to express the development of floral organs, and act as intermediary between meristem identity and organ identity. The objective of this present investigation was to study the allelic diversity within the selected rice lines and O. rufipogon for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) linked to floral organ development in rice

Read more

Summary

Introduction

The most important area in rice breeding is increase in quantity per unit area per unit time. These two genes function to express the development of floral organs, and act as intermediary between meristem identity and organ identity The objective of this present investigation was to study the allelic diversity within the selected rice lines (cultivars Jugal, Bhutmoori, IR36) and O. rufipogon for five genetic loci (DL, FON4, OsMADS24, OsMADS45 and Spw1) linked to floral organ development in rice. The functions of these loci constitute the preliminary information required for utilization of this special trait in breeding through molecular breeding

Materials and Method
Results
Discussions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.