Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder often associated with difficulties in speech production and fine-motor tasks. Thus, there is a need to develop objective measures to assess and understand speech production and other fine-motor challenges in individuals with ASD. In addition, recent research suggests that difficulties with speech production and fine-motor tasks may contribute to language difficulties in ASD. In this paper, we explore the utility of an off-body recording platform, from which we administer a speech- and fine-motor protocol to verbal children with ASD and neurotypical controls. We utilize a correlation-based analysis technique to develop proxy measures of motor coordination from signals derived from recordings of speech- and fine-motor behaviors. Eigenvalues of the resulting correlation matrix are inputs to Gaussian Mixture Models to discriminate between highly-verbal children with ASD and neurotypical controls. These eigenvalues also characterize the complexity (underlying dimensionality) of representative signals of speech- and fine-motor movement dynamics, and form the feature basis to estimate scores on an expressive vocabulary measure. Based on a pilot dataset (15 ASD and 15 controls), features derived from an oral story reading task are used in discriminating between the two groups with AUCs > 0.80, and highlight lower complexity of coordination in children with ASD. Features derived from handwriting and maze tracing tasks led to AUCs of 0.86 and 0.91, however features derived from ocular tasks did not aid in discrimination between the ASD and neurotypical groups. In addition, features derived from free speech and sustained vowel tasks are strongly correlated with expressive vocabulary scores. These results indicate the promise of a correlation-based analysis in elucidating motor differences between individuals with ASD and neurotypical controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.