Abstract
This paper describes a new approach to knowledge creation that is instrumental for the emerging paradigm of data-intensive science. The proposed approach enables the acquisition of new insights from the data by exploiting existing relationships between diverse types of datasets acquired through various modalities. The value of data consistently improves when it can be linked to other data because linking multiple types of datasets allows creating novel data patterns within a scientific data space. These patterns enable the exploratory data analysis, an analysis strategy that emphasizes incremental and adaptive access to the datasets constituting a scientific data space while maintaining an open mind to alternative possibilities of data interconnectivity. A technology, the Linked Open data (LOD), was developed to enable the linking of datasets. We argue that the LOD technology presents several limitations that prevent the full exploitation of this technology to acquire new insights. In this paper, we outline a new approach that enables researchers to dynamically create data patterns in a research data space by exploiting explicit and implicit/hidden relationships between distributed research datasets. This dynamic creation of data patterns enables the exploratory data analysis strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.