Abstract

Objective:This study conducted exploratory metabolomic and lipidomic profiling of plasma samples from the DASH (Dietary Approaches to Stop Hypertension) Sodium Trial to identify unique plasma biomarkers to identify salt-sensitive versus salt-resistant participants.Methods:Utilizing plasma samples from the DASH-Sodium Trial, we conducted untargeted metabolomic and lipidomic profiling on plasma from salt-sensitive and salt-resistant DASH-Sodium Trial participants. Study 1 analyzed plasma from 106 salt-sensitive and 85 salt-resistant participants obtained during screening when participants consumed their regular diet. Study 2 examined paired within-participant plasma samples in 20 salt-sensitive and 20 salt-resistant participants during a high-salt and low-salt dietary intervention. To investigate differences in metabolites or lipidomes that could discriminate between salt-sensitive and salt-resistant participants or the response to a dietary sodium intervention Principal Component Analysis and Orthogonal Partial Least Square Discriminant Analysis was conducted. Differential expression analysis was performed to validate observed variance and to determine the statistical significance.Results:Differential expression analysis between salt-sensitive and salt-resistant participants at screening revealed no difference in plasma metabolites or lipidomes. In contrast, three annotated plasma metabolites, tocopherol alpha, 2-ketoisocaproic acid, and citramalic acid, differed significantly between high-sodium and low-sodium dietary interventions in salt-sensitive participants.Conclusion:In DASH-Sodium Trial participants on a regular diet, plasma metabolomic or lipidomic signatures were not different between salt-sensitive and salt-resistant participants. High-sodium intake was associated with changes in specific circulating metabolites in salt-sensitive participants. Further studies are needed to validate the identified metabolites as potential biomarkers that are associated with the salt sensitivity of blood pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.