Abstract
BackgroundTo study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX) and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA).Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. Cartilage explants were cultured in media containing the recombinant canine interleukin-1β (IL-1β) at 100 ng/ml and recombinant human oncostatin-M (OSM) at 50 ng/ml. The effects of tepoxalin and its metabolite were studied at three concentrations (1 × 10-5, 1 × 10-6 and 1 × 10-7 M). Total glycosaminoglycan (GAG) and collagen (hydroxyproline) release from cartilage explants were used as outcome measures of proteoglycan and collagen depletion respectively. PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity.ResultsTreatment with IL-1β and OSM significantly upregulated both collagen (p = 0.004) and proteoglycan (p = 0.001) release from the explants. Tepoxalin at 10-5 M and 10-6 M caused a decrease in collagen release from the explants (p = 0.047 and p = 0.075). Drug treatment showed no effect on GAG release. PGE2 concentration in culture media at day 7 was significantly increased by IL-1β and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production. LTB4 concentrations were too low to be quantified. Cytotoxicity assays suggested that neither tepoxalin nor its metabolite had a toxic effect on the cartilage chondrocytes at the concentrations and used in this study.ConclusionThis study provides evidence that tepoxalin exerts inhibition of COX and can reduce in vitro collagen loss from canine cartilage explants at a concentration of 10-5 M. We can conclude that, in this model, tepoxalin can partially inhibit the development of cartilage degeneration when it is available locally to the tissue.
Highlights
To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX) and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA).Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease
PGE2 concentration in culture media at day 7 was significantly increased by IL-1β and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production
Proteoglycan release from cytokine-treated cultured explants Our previous studies of cultured cartilage explants have shown that treatment with IL-1β and OSM significantly increase proteoglycan degradation after seven days in culture compared with controls [13]
Summary
To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX) and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA).Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX) and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA). PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity. The major proteoglycan of cartilage, aggrecan, contains large numbers of glycosaminoglycan (GAG) side-chains. In canine OA, an early event is the loss of aggrecan through degradative enzymic activity by aggrecanases (ADAMTS-4, -5) [4]. Aggrecan loss renders the collagen network susceptible to degradation by the matrix metalloproteases, MMP-1 and -13 [5,6]. The overall effect of increased degradation and inappropriate synthesis is a gradual loss of tissue. It is thought that the upregulation of matrix degradation and downregulation of synthesis is mediated through catabolic cytokines such as IL-1β, IL-6 and oncostatin-M (OSM) [79]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.