Abstract

Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia, and dental abnormalities. Mutations involving Runt-related transcription factor 2 (RUNX2) are currently the only known molecular etiology for CCD but are not identified in all CCD patients. No RUNX2 abnormality can be detected in about 20–30% of patients, and the molecular cause remains unknown. The present study includes a family case with typical features of CCD. RUNX2 mutation was first screened by sequencing analysis, and no mutation was detected. Copy number alterations of the RUNX2 gene were then measured by quantitative PCR and multiplex ligation-dependent probe amplification (MLPA). No copy number variation in RUNX2 could be detected. We performed whole-exome sequencing (WES) to identify the underlying genetic mutations. Unexpectedly, no abnormalities could be detected in genes related to the RUNX2 signaling pathway. Therefore, it was supposed that other new unknown gene variations might contribute to the CCD phenotype. We focused on Immunoglobulin superfamily member 10 (IGSF10), a gene related to bone development. An IGSF10 frameshift mutation (c.6001_6002delCT, p.Leu2001Valfs*24) was detected by WES. Sanger sequencing verified that this mutation was only detected in the patient and her affected mother but not in her unaffected father. Bioinformatics studies demonstrated that this mutation could change the 3D structure of the IGSF10 protein and severely damage its function. In addition, alkaline phosphatase (ALP) activity and the ability to form mineralized nodules were inhibited by IGSF10 knockdown compared with normal controls. The expression of bone sialoprotein (BSP) was significantly reduced by IGSF10 knockdown, but not that of other osteogenic markers. Our results provide new genetic evidence that IGSF10 mutation might contribute to CCD.

Highlights

  • Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal disorder that is, characterized by delayed closure of the fontanels, hypoplastic or aplastic clavicles, and dental anomalies (Mundlos, 1999)

  • The causative gene of CCD has been identified as Runt-related transcription factor 2 (RUNX2, known as CBFA1) (Mundlos et al, 1997), which is essential for osteoblast differentiation and skeletal development (Komori, 2020)

  • RUNX2 mutations are only detected in approximately two-thirds of patients with a CCD phenotype (Mundlos et al, 1997; Baumert et al, 2005), and numerous CCD patients have been identified who had no detectable mutations in RUNX2 by sequencing

Read more

Summary

Introduction

Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal disorder that is, characterized by delayed closure of the fontanels, hypoplastic or aplastic clavicles, and dental anomalies (Mundlos, 1999). The causative gene of CCD has been identified as Runt-related transcription factor 2 (RUNX2, known as CBFA1) (Mundlos et al, 1997), which is essential for osteoblast differentiation and skeletal development (Komori, 2020). RUNX2 mutations are only detected in approximately two-thirds of patients with a CCD phenotype (Mundlos et al, 1997; Baumert et al, 2005), and numerous CCD patients have been identified who had no detectable mutations in RUNX2 by sequencing. Other genetic diseases can show a similar phenotype to that of CCD, such as parietal foramina with cleidocranial dysplasia, which results from mutations in Drosophila muscle segment homeobox gene homologue 2 (MSX2) (Garcia-Minaur et al, 2003; Ott et al, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call