Abstract
PurposeThe purpose of this paper is to propose a new explicit time integration algorithm for solution to the linear and non-linear finite element equations of structural dynamic and wave propagation problems.Design/methodology/approachThe algorithm is completely explicit so that no linear equation system requires solving, if the mass matrix of the finite element equation is diagonal and whether the damping matrix does or not. The algorithm is a single-step method that has the simple starting and is applicable to the analysis with the variable time step size. The algorithm is second-order accurate and conditionally stable. Its numerical stability, dissipation and dispersion are analyzed for the dynamic single-degree-of-freedom equation. The stability of the multi-degrees-of-freedom non-proportional damping system can be evaluated directly by the stability theory on ordinary differential equation.FindingsThe performance of the proposed algorithm is demonstrated by several numerical examples including the linear single-degree-of-freedom problem, non-linear two-degree-of-freedom problem, wave propagation problem in two-dimensional layer and seismic elastoplastic analysis of high-rise structure.Originality/valueA new single-step second-order accurate explicit time integration algorithm is proposed to solve the linear and non-linear dynamic finite element equations. The algorithm has advantages on the numerical stability and accuracy over the existing modified central difference method and Chung-Lee method though the theory and numerical analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.