Abstract

Image restoration and denoising is an essential preprocessing step for almost every subsequent task in computer vision. Markov Random Fields offer a well-founded, sophisticated approach for this purpose, but unfortunately the associated computation procedures are not sufficiently fast, due to a high-dimensional optimization problem. While the increase of computing power could not solve this runtime issue appropriately, we address it in a mathematical way: we suggest an analytical solution for the optimum of the inference problem, which provides desirable mathematical properties. In practice, our new method accelerates the runtime via reducing the computational complexity of the image restoration task by orders of magnitude, independent from the smoothing intensity. As a result, Markov Random Fields can be considered for modern big data problems in computer vision, especially if numerous images with equal sizes are processed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.